End-to-End Latency Analysis
Framework
Release 0.2-alpha

Jiri Kuncar <jiri.kuncar@gmail.com>
Rafia Inam <rafia.inam@mdh.se>

March 04, 2013

4

User’s Guide

1.1 Quickstart .

API Reference

21 API

Additional Notes

3.1 Licence . . .

3.2 Bibliography

Indices and tables

Bibliography

CONTENTS

15
15
15

17

19

End-to-End Latency Analysis Framework, Release 0.2-alpha

Welcome to End-to-End Latency Analysis Framework’s documentation. This documentation is divided into different
parts. I recommend that you get started with installation and then head over to the Quickstart. If you’d rather dive into
the internals of the library, check out the AP/ documentation.

This framwork depends on two external libraries: the numpy and the argparse. These libraries are not documented
here. If you want to dive into their documentation, check out the following links:

e Numpy Documentation

* Argparse Documentation

CONTENTS 1

http://docs.scipy.org/doc/
http://docs.python.org/dev/library/argparse.html
http://docs.scipy.org/doc/
http://docs.python.org/dev/library/argparse.html

End-to-End Latency Analysis Framework, Release 0.2-alpha

2 CONTENTS

CHAPTER
ONE

USER’S GUIDE

1.1 Quickstart

Eager to get started? This page gives a good introduction how the End-to-End Latency Analysis Framework works
and how you can benefit from it. It assumes you already have it installed. If you do not, head over to the installation
section.

1.1.1 Finding possible execution paths

The whole simulation is dependend on quick and effective algorithm for finding possible exectution paths of tasks in
all system components. All latency types are calculated on specified data flow path that contains identifiers of tasks in
analyzed system.

Our generator generate_paths () returns tuples with activation indexes of tasks accordingly to the analyzed
execution path. The algorithm starts with finding closest activation indexes of the first task in path for defined interval.
Following pseudocode shows simplified version of our algorithm using methods alpha () and ialpha () defined
on Task.

function generate_paths(start, stop, tasks_in_path):
paths <- list ()
task <- tasks_in_path.pop (0) # assign and remove first task from the path
loop i from task.ialpha(start) to task.ialpha(stop):
find a time range for next task
if length(tasks_in_path) > 0:
time <- task.alpha (i)
next_task <- tasks_in_path[0] # next task in path
j <— next_task.ialpha(time) # closest activation index
new_start <- next_tasks.alpha(j) # closest activation time
find posible paths for next task in path from new start.
for all path in generate_paths(new_start, stop, tasks_in_path):
join current activation index with found tuple
paths.append(path.prepend (i))
end for
else:
paths.append(list (i)) # list with only one index
end if
end loop
return paths
end function

End-to-End Latency Analysis Framework, Release 0.2-alpha

4 Chapter 1. User’s Guide

CHAPTER
TWO

APl REFERENCE

If you are looking for information on a specific function, class or method, this part of the documentation is for you.

2.1 API

This part of the documentation covers all the interfaces of End-to-End Analyzer Framework.

2.1.1 Task Object

class eelaf . Task (name, period, priority, exetime)

System task.
C
Alias for task ¢; execution time (C}).
HB
Set of tasks belonging to same Component C with priorities higher than itself one.
HB(s) ={Ty € C | P(k) > P(s)}
P

Alias for task ¢; period (P(7)).

static alpha (i)
Calculate time of i-th activation.

O(T-(Z) = Tstart —+ 7 % P(T)

Parameters i— Activation number.
Returns Activation time.

blocking time
Task deadline (b;).

Warning: Currently always returns 0.

deadline
Task deadline.

End-to-End Latency Analysis Framework, Release 0.2-alpha

Note: Currently deadline==period.

static delta (i)
Calculate response time of i-th activation.

Parameters i — Activation number.

Returns Response time of i-th activation.

Note: In our case we always return task response time.

See Also:
response_time ()

freq
Task frequency f(¢;) = 1/P(t;).
static ialpha (7)

Calculate previous activation for given time.

071 t) = |t

Parameters t — Current time.

Returns int — activation number.

P
Alias for task ¢; priority (p(4)).

plan (time)
Returns True if the task should be scheduled at given time.

static rbf (1)
The request bound function.

It computes the maximum cumulative execution requests that could be generated from the time that task is
released up to time 7.

t
rbfi(t) = Ci +b; + Tkg{;m T O
Parameters t — Time limit for execution requests.
See Also:
[Inam2548:2011] formula (2).

response_time
Task response time.

RS(i) =t |3t:0<t<=D;rbfi(t) <= sbfc(t)

status (time)
Returns textual representation of task status at given time.

utilization
Calculates utilization.

6 Chapter 2. API Reference

End-to-End Latency Analysis Framework, Release 0.2-alpha

2.1.2 Component (Subsystem) Object
class eelaf.Component (name, period, priority, budget, scheduler="EDF’, payback=False)
System servers / components.

Bl
The maximum blocking imposed to a this subsystem.

Bl(s) = max{X (k) | S, € LPS(s)}

See Also:
[Inam?2548:2011] formula (10).

HPS
Set of subsystems of System § with priority higher than itself (.S;).

HSP(s) ={S, € S| P(k) > P(s)}

See Also:
Used in formula (9) in [Inam2548:2011].

LPS
Set of subsystems of System § with priority lower than itself (Ss).

LSP(s) = {Sy € S| P(k) < P(s)}

See Also:
Used in formula (10) in [Inam2548:2011].

P
Alias for Component period.
Q
Alias for Component budget.
RBF (1)
Request Bound Function
See Also:
[Inam2548:2011] formula (9) and (11).
X
The maximum execution-time that any subsystem-internal task may lock a shared global resource.
Warning: Currently always returns 0.
deadline
The function returns Component deadline.
Currently the self.deadline==self.period.
£1 (1)

Implementation of helper formula f7.

2.1. API 7

End-to-End Latency Analysis Framework, Release 0.2-alpha

Parameters t — time
See Also:
[Tnam2548:2011] formula (5).

£2 (1)
Implementation of helper formula f2.

Parameters t — time
See Also:
[Tnam2548:2011] formula (6).

freq
The function calculates Component frequency.

static sbf (1)
Supply Bound Function.

If payback is True then this method depends on £1 () and £2 () :

return max (min(£f1(t), £2(t)), 0)

Parameters t — time

See Also:
[Tnam2548:2011] formula (3) and (4).

schedulability
Component schedulability condition.

for t in C_{tasks}:
schedulable <- False

for 1 in [1..P(t)]:
if rbf_t (i) <= sbf_C(1i):
schedulable <- True
break
end if
end for

if not schedulable:
return False
end if
end for
return True

See Also:
[Tnam2548:2011] formula (13).

utilization

Returns Component utilization as product of its frequency and budget.

2.1.3 System Object

class eelaf.System (scheduler="FPS’, resolution=1000, components=None)
Models a physical system with instances of Component.

Chapter 2. API Reference

End-to-End Latency Analysis Framework, Release 0.2-alpha

B (1)
Blocking time left at given time.

Warning: Currently always returns 0.

static TP_first (possible_paths)
Set of all non-duplicate, reachable timed paths, for which no timed path exists that shares the same start
instance of the first task and has an earlier end instance of the last task.

TP/t = {tp € TP™" | =3tp’ € TP™*" : tp) = tpy Atpl, < tpn}

function earlier(tp, tp’):
index -1 gets last element in array
return tp’ [0] == tp[0] and tp’[-1] < tp[-1]
end function

out <- list ()
TP_reach_paths <- TP_reach (possible_paths)
for tp in TP_reach_paths:
if not any (map(partial (earlier, tp), TP_reach_paths))):
out.append (tp)
end if
end for
return out

See Also:
[Feiertag:08] formula (11).

static TP_reach (possible_paths)
It obtains the set of all paths and returns only all reachable timed path (TP"%").

out <- list()
for all path in possible_paths:
if reach_path(path):
out .append (path)
end if
end for
return out

See Also:
[Feiertag:08] formula (9).

addComponent (component)
Adds new Component instance to the system.

It stores reference of the system to added component.
Parameters component (Component) — New system subsystem.

static att (w, i, r, j)
It returns True if “activation time travel” occurs (att(t, (1) — t.(5))).

The activation time travel occurs when the reader is activated before the writer (c,.(7) is equivalent to
alpha () ont ()).

att(tw (i) = tr(j)) = ar(j) < o (9)

. API 9

End-to-End Latency Analysis Framework, Release 0.2-alpha

Parameters
* w — Index of writer task in data path.
¢ i— Activation index of writer task.
* r — Index of reader task in data path.
* j— Activation index of reader task.
See Also:
[Feiertag:08] formula (3)

static crit (w, i, r,j)
The “critical function” determines if writer and reader overlap in execution even in case of non-activation
time travel (crit(ty, (i) — t-(4))).

crit(ty (i) = (7)) = ar(F) < aw(i) + 0w (i)

Parameters
e w — Index of writer task in data path.
* i— Activation index of writer task.
e r — Index of reader task in data path.
¢ j— Activation index of reader task.
See Also:
[Feiertag:08] formula (4)

delta_FF (Is)
Find maximum of First-to-First path delays.

See Also:
[Feiertag:08] formula (17).

delta_FF_path (path, tp_reach)
Calculate First-to-First path delay.

AFF(ip) = AL (ip) + au (tp1) — an (pred((tp)))

Parameters
e path — Array with task activation numbers.
* tp_reach — List of reachable paths.
Fixme remove dependency on fp_reach parameter.
See Also:
[Feiertag:08] formula (16).

delta_FL(ls)
Find maximum of First-to-Last path delays.

See Also:
[Feiertag:08] formula (15).

10 Chapter 2. API Reference

End-to-End Latency Analysis Framework, Release 0.2-alpha

delta_FL_path (path, tp_reach)
Calculate First-to-Last path delay (uses pred ()).

AFL(Ep) = ALE (D) + oy (tp1) — o (pred((tp)))

Parameters
e path — Array with task activation numbers.
* tp_reach — List of reachable paths.
Fixme remove dependency on fp_reach parameter.
See Also:
[Feiertag:08] formula (14).

static delta_LF (Is)
The maximum “Last-to-First” timed path delay.

ALE (p) = max{A((tp)) | (tp) € TP™"}

See Also:
[Feiertag:08] formula (12).

static delta_LL (possible_paths)
Returns maximum latency over all reachable paths (TP_reach ()).

ALL(possiblepaths) = max{A(path) | path € ']I‘IP’Te”Ch'}

map .. calls function for each element in list
max .. returns maximal element from list
return max (map (delta_path, TP_reach (possible_paths)))

See Also:
[Feiertag:08] formula (10).

delta_LL path (path)
Calculate Last-to-Last path delay using delta_path ().

delta_path (path)
Calculate end-to-end path delay.

A(path) = ay(pathy,) + 6y, (pathy,) — aq (pathy)

See Also:
[Feiertag:08] formula (2).

static forw (w, i, r, j)
It determines the forward reachability of the two task instances ¢,, and t,..

forw(ty (i) — t.(3)) = matt(ty (i) = t.(5)) A (merit(ty (i) — 6.(5)) V wait(ty (i) — t-(4)))

11

2.1. API

End-to-End Latency Analysis Framework, Release 0.2-alpha

Parameters
* w — Index of writer task in data path.
¢ i— Activation index of writer task.
* r — Index of reader task in data path.
* j— Activation index of reader task.
See Also:
[Feiertag:08] formula (6)

generate_paths (index, start, stop)
Generator of possible paths for given task in path.

It yields tuples with task activation index starting from ‘index ‘th task in defined path.

paths <- list ()
task <- tasks_in_path.pop (0) # assign and remove first task from the path
loop i from task.ialpha(start) to task.ialpha(stop):
find a time range for next task
if length(tasks_in_path) > O0:
time <- task.alpha (i)
next_task <- tasks_in_path[0] # next task in path
j <- next_task.ialpha(time) # closest activation index
new_start <- next_tasks.alpha(j) # closest activation time
find posible paths for next task in path from new start.
for all path in generate_paths(new_start, stop, tasks_in_path):
join current activation index with found tuple
paths.append(path.prepend (i))
end for
else:
paths.append(list (i)) # list with only one index
end if
end loop
return paths

pred (path, tp_reach)
Temporal distance to the start of the latest previous “last-to-x” path.
See Also:
[Feiertag:08] formula (13).

static reach (w, i, r, j)
The output of an instance t,, (%) is overwritten by instance ¢,, (i + 1) when both instances can forward reach

the same reading task instance t,(j). In other words, ¢, (%) can reach ¢,.(j) if and only if the following
function returns True:

reach(ty (i) = t:(j)) = (forw(tw(i)— > t(4)) A = forw(tw(i+1)— > t:(5)))

Parameters
* w — Index of writer task in data path.
* i— Activation index of writer task.
* r — Index of reader task in data path.

* j— Activation index of reader task.

12 Chapter 2. API Reference

End-to-End Latency Analysis Framework, Release 0.2-alpha

See Also:
[Feiertag:08] formula (7).

static reach_path (path)
Check path rechability.

path_length <- length (path)
for i in [0..path_length-1):
tp_i <- path[i]
tp_il <- path[i+1]
if reach(t_w(tpi) —-> t_{w+l} (tp_1il)):
return False
end if
end for
return True

See Also:
[Feiertag:08] formula (8).

schedulability
This method checks the global schedulability condition.

for C in components:
P(C) .. period of component C
schedulable <- False
for t in [0..P(C)]:
if RBF(C, t) <= t:
schedulable <- True
break
end if
end for
if not schedulable:
return False
end if
end for
return True

See Also:
[Inam2548:2011] formula (8).

t (i)
Get i-th Task instance (¢;).

Parameters i— The index of system task starting from O.
Returns Instance of Task.

tasks
All system tasks.

tasks_in_path
List of tasks in data path.

utilization
Returns system utilization calculated as sum of component utilizations.

static wait (w, i, r,j)
It determines if the writer finishes first, because the reader has to wait due to its priority in case of over-

2.1. API 13

End-to-End Latency Analysis Framework, Release 0.2-alpha

lapped but not time-traveling execution (wait(t,,(¢) — t-(5))).

wait(t, (i) = t,.(4)) = p(t;) < p(tw)

Parameters
* w — Index of writer task in data path.
* i— Activation index of writer task.
* r — Index of reader task in data path.
* j— Activation index of reader task.
See Also:
[Feiertag:08] formula (5)

14

Chapter 2. API Reference

CHAPTER
THREE

ADDITIONAL NOTES

Design notes, legal information and changelog are here for the interested.

3.1 Licence

Source code is distributed under following GNU/GPLv2 licence.

EELAF is free software; you can redistribute it and/or

modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.

Analysis framework is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License

along with Invenio; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.

3.2 Bibliography

15

End-to-End Latency Analysis Framework, Release 0.2-alpha

16 Chapter 3. Additional Notes

CHAPTER
FOUR

* genindex
* modindex

INDICES AND TABLES

17

End-to-End Latency Analysis Framework, Release 0.2-alpha

18 Chapter 4. Indices and tables

BIBLIOGRAPHY

[Feiertag:08] N. Feiertag, K. Richter, J. Nordlander, and J. Jonsson, “A Compositional Framework for End-to-End
Path Delay Calculation of Automotive Systems under Different Path Semantics”, In Workshop on Compositional
Theory and Technology for Real-Time Embedded Systems (CRTS ‘08).

[l[nam2548:2011] R. Inam, J. Maki-Turja, M. Sjodin, and M. Behnam, “Hard Real-time Support for Hierarchical
Scheduling in FreeRTOS”, 7th annual workshop on Operating Systems Platforms for Embedded Real-Time Ap-
plications (OSPERT‘11).

19

	User's Guide
	Quickstart

	API Reference
	API

	Additional Notes
	Licence
	Bibliography

	Indices and tables
	Bibliography

